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1. Introduction

Kargarnovin et al. (1997) used finite Mellin transforms to obtain the displacement and stress compo-
nents in an isotropic wedge with finite radius under antiplane deformation (Fig. 1). The boundary condition
on the circular segment (r = a) may be traction free (Case I) or fixed (Case II). Three different boundary
conditions are assigned on the radial edges: traction—displacement (Case a), displacement—displacement
(Case b), and traction—traction (Case c). For the cases when traction is applied on the radial edge, they
made a conclusion that the stress 7., and displacement w are divergent at the points of application of
tractions. Furthermore, t,. is discontinuous on the arcs » = A, and » = h,. This conclusion is incorrect.
Obviously, the stress has to be continuous inside the wedge. The objective of this comment is to point out
this inconsistency and gives correct results for displacement and stress fields.

2. Incorrect results in Kargarnovin et al. (1997)

The displacements and stress components of Cases Ic and Ilc in Kargarnovin et al. (1997) are incorrect.
The authors carried out the inverse transform of displacement w by using the residue theory (i.e. Egs. (34)
and (53) in Kargarnovin et al. (1997)):
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The contour includes two paths: I'y and I, (Fig. 2). The term cos(Sa) cos(S0)/ sin(Se) will cause the integral
diverge along I';. It results in the incorrect expressions of displacements (Egs. (35), (37) and (54) in

*Corresponding author. Tel.: +886-6-2757575x62165; fax: +886-6-2363950.
E-mail address: chchue@mail.ncku.edu.tw (C.-H. Chue).

0020-7683/$ - see front matter © 2004 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ijsolstr.2004.04.008


mail to: chchue@mail.ncku.edu.tw

5024 C.-H. Chue, W.-J. Liu | International Journal of Solids and Structures 41 (2004) 5023-5034

Ay

o A
o >

! » Re

Cieo ¥

Fig. 2. Integral contours of I'; and I'; in Egs. (1) and (2).

Kargarnovin et al. (1997)). Consequently, they made an incorrect conclusion that the stress 7, is discon-
tinuous on the arcs » = hy and r = h,. In addition, the solution of 7., in Kargarnovin et al. (1997) has some
typo errors.

In addition, same mistake can be found in Cases Ia and Ila in which the traction boundary condition is
applied on one radial edge. The stresses 7,. and 7y, at the arcs » = &y and » = h, are incorrect and have to be
derived separately using a different approach.

3. Our exact solutions

A new coordinate system shown in Fig. 3 is defined. The displacements and the stresses of Cases Ic and
IIc are derived analytically. In addition, the stresses for cases Ia and Ila at the arcs » = #; and » = h, are
also obtained too.

3.1. Case Ic: Traction-free on circular edge r = a and traction—traction on radial edges

The boundary conditions of radial edges become:

Tos (r, - %) = Pié(r — hy) (3)
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Fig. 3. A finite wedge defined in a new coordinate system.

@ (r3 ) = Po(r— ) 4)
The transformed displacement in this case is obtained as

P | (a®hyS +h3) + (a®hS + k) sin(S0) N (a®hyS + h5) — (a®hS + ) cos(S0)
28 cos (52) 28 sin (52)
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After lengthy mathematical operations, we get the displacements in three different domains r <4y,
hlgréhz, andr;hz:
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for h; <r<h,, and
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hy. The displacement at wedge apex is set to zero. We will prove numerically that the displacement is

forr >

continuous within the whole wedge.
The stresses 7,. and 7. can be obtained in three domains » < hy, h; < r < hy, and r > h, as:
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(Qk+1)m ) (Z/H»l)n)
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for hy <r < hy, and
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for » > hy. It can be seen that the singularity order becomes conventional square root singularity when the

wedge angle o = 2m.
The stresses 7,. and 14, on the circular arcs » = h; and r = &, have to be dealt with separately by using the
(8)

following equations:
aW _1 U c+ioco e
R el A Wy (S, 0)dS
©)

_ROW g [T O(S,0)
N  2mir /L._ix " o0 ds



5028 C.-H. Chue, W.-J. Liu | International Journal of Solids and Structures 41 (2004) 5023-5034
Since the deriving procedures are very complicated, we simply write down the results as follows:
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for r = h;, and
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for » = h,. In deriving the expressions of 7y, in Egs. (10b) and (10d), 0 cannot be equal to +o/2. From Egs.
(5) and (9), we may see that 7o, (h;, —%) and 4. (h2,%) are zero. In addition, the stress 7y, is singular at the
points of applied traction, i.e. to.(h1,%) — oo and 1. (hy, —%) — co. However, the stress 7,. is finite at

the points of applied traction. Kargarnovin et al. (1997) predicted that the stress 7,, is divergent on those
points.
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3.2. Case Ilc: Fixed-displacement on circular edge r = a and traction—traction on radial edges

The transformed displacement in this case is:

wi(s,0) =

P [ (@hy® = 13) + (@h® = B) sin($0) | (@hs® = B) — (ki — i) cos(S@)]
u

28 cos (%) 28 sin (%)

(11)

Using similar computational procedures of previous Case Ic, we get the displacements in three different
domains » < hy, by <r<hy, and r = hy:
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for r = hy. The displacement w has been shifted such that it is fixed at the circular edge » = a. We will prove
numerically that the displacement is continuous within the whole wedge.

+
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The stresses 1,. and 14, in three domains r < A, h1 <r<hy, and r > h, are:
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for hy < r < hy,
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for r > h,.
The stresses on the arcs » = A and r = h, are obtained by using the following relations:
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for » = h;, and
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for r = h,.
Again, stress 7y, satisfies the following requirements:

3.3. Case la: Traction-free on circular edge r = a and traction—displacement on radial edges

Using the relations (8) and (9) in Case Ia, we get the stresses 7,. and . at » = & as follows:

Qk+1)n
= g 2k +1

,.(h,0) {Z “‘( ) sin (M)} (18a)
s 20
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ol 0) = {z 10 3

The solution of 7y, satisfies the singular stress requirement at the point of applied traction, i.e.
79.(h,ot) — 0o. We can prove that the stresses in this case are the same as Eq. (7) of Case Ic if we let
hy = hy, = h and the wedge angle o of Eq. (7) is replaced by 2a.

os<(2k+1)n0)+4[ cos (% )ﬂ N cos (2 )ﬂ_ } (18b)

2a 1—sin(2)]  4[1+sin (2)]
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3.4. Case Ila: Traction-free on circular edge r = a and traction—displacement on radial edges

Using the relations (14) and (15) in Case I1a, we get the stresses .. and 14, at » = & as follows:
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Fig. 4. Variations of w, 1,., and 74, with distance r for Case Ic along x-axis (¢ = 0.2 m, #; = 0.08 m, 4, = 0.14 m, o = 0.67).
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Fig. 5. Variations of w, 7,., and t,, with distance  for Case Ilc along x-axis (¢ = 0.2 m, #; = 0.08 m, 4, = 0.14 m, o = 0.67).
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Again, the solution of 7y, satisfies the singular stress requirement at the point of applied traction, i.e.
19 (h, o) — o0.

4. Numerical validation

We will prove that the displacement and stresses are continuous by considering a numerical example:
P =100 kN/m, u =193 GPa, a = 0.2 m, 5y = 0.08 m, 4, = 0.14 m, o = 0.67. Figs. 4 and 5 plot the vari-
ations of w, 7,., and 14, of Cases Ic and Ilc along the x-axis (i.e. 0 = 0°), respectively. These two plots are
accomplished by using 16000 and 100 terms for displacement and stresses, respectively. All of these
quantities are continuous.
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