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1. Introduction

Kargarnovin et al. (1997) used finite Mellin transforms to obtain the displacement and stress compo-

nents in an isotropic wedge with finite radius under antiplane deformation (Fig. 1). The boundary condition

on the circular segment (r ¼ a) may be traction free (Case I) or fixed (Case II). Three different boundary
conditions are assigned on the radial edges: traction–displacement (Case a), displacement–displacement

(Case b), and traction–traction (Case c). For the cases when traction is applied on the radial edge, they

made a conclusion that the stress srz and displacement w are divergent at the points of application of

tractions. Furthermore, srz is discontinuous on the arcs r ¼ h1 and r ¼ h2. This conclusion is incorrect.

Obviously, the stress has to be continuous inside the wedge. The objective of this comment is to point out

this inconsistency and gives correct results for displacement and stress fields.
2. Incorrect results in Kargarnovin et al. (1997)

The displacements and stress components of Cases Ic and IIc in Kargarnovin et al. (1997) are incorrect.

The authors carried out the inverse transform of displacement w by using the residue theory (i.e. Eqs. (34)
and (53) in Kargarnovin et al. (1997)):
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The contour includes two paths: C1 and C2 (Fig. 2). The term cosðSaÞ cosðShÞ= sinðSaÞ will cause the integral
diverge along C2. It results in the incorrect expressions of displacements (Eqs. (35), (37) and (54) in
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Fig. 2. Integral contours of C1 and C2 in Eqs. (1) and (2).
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Fig. 1. A finite wedge with radius a and wedge angle a.
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Kargarnovin et al. (1997)). Consequently, they made an incorrect conclusion that the stress srz is discon-
tinuous on the arcs r ¼ h1 and r ¼ h2. In addition, the solution of srz in Kargarnovin et al. (1997) has some

typo errors.

In addition, same mistake can be found in Cases Ia and IIa in which the traction boundary condition is

applied on one radial edge. The stresses srz and shz at the arcs r ¼ h1 and r ¼ h2 are incorrect and have to be
derived separately using a different approach.
3. Our exact solutions

A new coordinate system shown in Fig. 3 is defined. The displacements and the stresses of Cases Ic and

IIc are derived analytically. In addition, the stresses for cases Ia and IIa at the arcs r ¼ h1 and r ¼ h2 are
also obtained too.

3.1. Case Ic: Traction-free on circular edge r ¼ a and traction–traction on radial edges

The boundary conditions of radial edges become:
shz r;
�

� a
2

�
¼ Pdðr � h2Þ ð3Þ



Fig. 3. A finite wedge defined in a new coordinate system.
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The transformed displacement in this case is obtained as
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After lengthy mathematical operations, we get the displacements in three different domains r6 h1,
h1 6 r6 h2, and rP h2:
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for h1 6 r6 h2, and
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for rP h2. The displacement at wedge apex is set to zero. We will prove numerically that the displacement is

continuous within the whole wedge.

The stresses srz and shz can be obtained in three domains r < h1, h1 < r < h2, and r > h2 as:
srzðr; hÞ ¼
P
ra

X1
k¼0

ð
(

� 1Þk r
a

� �ð2kþ1Þp
a h1

a

� �ð2kþ1Þp
a

  
þ h2

a

� �ð2kþ1Þp
a

!
þ r

h1

� �ð2kþ1Þp
a

þ r
h2

� �ð2kþ1Þp
a

!

� sin
ð2k þ 1Þph

a

� �
þ
X1
k¼1

ð � 1Þk r
a

� �2kp
a h1

a

� �2kp
a

  
� h2

a

� �2kp
a

!

þ r
h1

� �2kp
a

� r
h2

� �2kp
a

!
cos

2kph
a

� �)
ð7aÞ

shzðr; hÞ ¼
P
ra

X1
k¼0

ð
(

� 1Þk r
a

� �ð2kþ1Þp
a h1

a

� �ð2kþ1Þp
a

  
þ h2

a

� �ð2kþ1Þp
a

!
þ r

h1

� �ð2kþ1Þp
a

þ r
h2

� �ð2kþ1Þp
a

!

� cos
ð2k þ 1Þph

a

� �
þ
X1
k¼1

ð � 1Þk r
a

� �2kp
a h2

a

� �2kp
a

  
� h1

a

� �2kp
a

!

� r
h1

� �2kp
a

þ r
h2

� �2kp
a

!
sin

2kph
a

� �)
ð7bÞ
for r < h1,
srzðr; hÞ ¼
P
ra

X1
k¼0

ð
(

� 1Þk r
a

� �ð2kþ1Þp
a h1

a

� �ð2kþ1Þp
a

  
þ h2

a

� �ð2kþ1Þp
a

!
� h1

r

� �ð2kþ1Þp
a

þ r
h2

� �ð2kþ1Þp
a

!

� sin
ð2k þ 1Þph

a

� �
þ
X1
k¼1

ð � 1Þk r
a

� �2kp
a h1

a

� �2kp
a

  
� h2

a

� �2kp
a

!

� h1
r

� �2kp
a

� r
h2

� �2kp
a

!
cos

2kph
a

� �
� 1

)
ð7cÞ



C.-H. Chue, W.-J. Liu / International Journal of Solids and Structures 41 (2004) 5023–5034 5027
shzðr; hÞ ¼
P
ra

X1
k¼0

ð
(

� 1Þk r
a

� �ð2kþ1Þp
a h1

a

� �ð2kþ1Þp
a

  
þ h2

a

� �ð2kþ1Þp
a

!
þ h1

r

� �ð2kþ1Þp
a

þ r
h2

� �ð2kþ1Þp
a

!

� cos
ð2k þ 1Þph

a

� �
þ
X1
k¼1

ð � 1Þk r
a

� �2kp
a h2

a

� �2kp
a

  
� h1

a

� �2kp
a

!

� h1
r

� �2kp
a

þ r
h2

� �2kp
a

!
sin

2kph
a

� �)
ð7dÞ
for h1 < r < h2, and
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for r > h2. It can be seen that the singularity order becomes conventional square root singularity when the

wedge angle a ¼ 2p.
The stresses srz and shz on the circular arcs r ¼ h1 and r ¼ h2 have to be dealt with separately by using the

following equations:
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Since the deriving procedures are very complicated, we simply write down the results as follows:
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for r ¼ h2. In deriving the expressions of shz in Eqs. (10b) and (10d), h cannot be equal to �a=2. From Eqs.
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the points of applied traction. Kargarnovin et al. (1997) predicted that the stress srz is divergent on those

points.
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3.2. Case IIc: Fixed-displacement on circular edge r ¼ a and traction–traction on radial edges

The transformed displacement in this case is:
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Using similar computational procedures of previous Case Ic, we get the displacements in three different

domains r6 h1, h1 6 r6 h2, and rP h2:
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for rP h2. The displacement w has been shifted such that it is fixed at the circular edge r ¼ a. We will prove

numerically that the displacement is continuous within the whole wedge.
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The stresses srz and shz in three domains r < h1, h1 < r < h2, and r > h2 are:
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for r < h1,
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for h1 < r < h2,
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for r > h2.
The stresses on the arcs r ¼ h1 and r ¼ h2 are obtained by using the following relations:
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The results are:
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for r ¼ h1, and
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for r ¼ h2.
Again, stress shz satisfies the following requirements:
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3.3. Case Ia: Traction-free on circular edge r ¼ a and traction–displacement on radial edges

Using the relations (8) and (9) in Case Ia, we get the stresses srz and shz at r ¼ h as follows:
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The solution of shz satisfies the singular stress requirement at the point of applied traction, i.e.
shzðh; aÞ ! 1. We can prove that the stresses in this case are the same as Eq. (7) of Case Ic if we let

h1 ¼ h2 ¼ h and the wedge angle a of Eq. (7) is replaced by 2a.
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3.4. Case IIa: Traction-free on circular edge r ¼ a and traction–displacement on radial edges

Using the relations (14) and (15) in Case IIa, we get the stresses srz and shz at r ¼ h as follows:
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. 4. Variations of w, srz, and shz with distance r for Case Ic along x-axis (a ¼ 0:2 m, h1 ¼ 0:08 m, h2 ¼ 0:14 m, a ¼ 0:6p).
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. 5. Variations of w, srz, and shz with distance r for Case IIc along x-axis (a ¼ 0:2 m, h1 ¼ 0:08 m, h2 ¼ 0:14 m, a ¼ 0:6p).
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Again, the solution of shz satisfies the singular stress requirement at the point of applied traction, i.e.

shzðh; aÞ ! 1.
4. Numerical validation

We will prove that the displacement and stresses are continuous by considering a numerical example:

P ¼ 100 kN/m, l ¼ 193 GPa, a ¼ 0:2 m, h1 ¼ 0:08 m, h2 ¼ 0:14 m, a ¼ 0:6p. Figs. 4 and 5 plot the vari-

ations of w, srz, and shz of Cases Ic and IIc along the x-axis (i.e. h ¼ 0�), respectively. These two plots are
accomplished by using 16 000 and 100 terms for displacement and stresses, respectively. All of these

quantities are continuous.
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